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Abstract

We study the problem of assigning items to agents so as to maximize the weighted Nash
Social Welfare (NSW) under submodular valuations. The best-known result for the problem
is an O(nwmax)-approximation due to Garg, Husic, Li, Vega, and Vondrak [13], where wmax is
the maximum weight over all agents. Obtaining a constant approximation algorithm is an open
problem in the field that has recently attracted considerable attention.

We give the first such algorithm for the problem, thus solving the open problem in the af-
firmative. Our algorithm is based on the natural Configuration LP for the problem, which was
introduced recently by Feng and Li [11] for the additive valuation case. Our rounding algorithm
is similar to that of Li [25] developed for the unrelated machine scheduling problem to minimize
weighted completion time. Roughly speaking, we designate the largest item in each configuration
as a large item and the remaining items as small items. So, every agent gets precisely 1 fractional
large item in the configuration LP solution. With the rounding algorithm in [25], we can ensure
that in the obtained solution, every agent gets precisely 1 large item, and the assignments of small
items are negatively correlated.

∗The work of YF and SL was supported by the State Key Laboratory for Novel Software Technology and the New
Cornerstone Science Laboratory.
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1 Introduction

We study the problem of allocating a set M of indivisible items among a set N of agents, where
each agent i ∈ N has a monotone non-negative submodular valuation vi : 2

M → R≥0 and a weight
wi ∈ (0, 1) with

∑
i∈N wi = 1. The weighted Nash Social Welfare (NSW) problem under submodular

valuations asks for partition S := (Si)i∈N of M that maximizes the weighted geometric mean of the
agents’ valuations:

NSW(S) =
∏
i∈N

(vi(Si))
wi .

The case when all wi’s are equal to 1/n is called the unweighted Nash Social Welfare problem. As
usual, we assume we are given a value oracle for each vi. W.l.o.g, we assume vi(∅) = 0 for every agent
i ∈ N 1.

Fair and efficient allocation of resources is a central problem in computer science, game theory,
and social choices, with applications across diverse domains [1, 3, 4, 22, 27, 31, 32, 37]. Three distinct
communities independently discovered the notation of Nash social welfare: as a solution to the bar-
gaining problem in classical game theory [28], as a well-established concept of proportional fairness
in networking [23], and as the celebrated notion of competitive equilibrium with equal incomes in
economics [35]. The unweighted case for the problem was introduced by Nash [28], and it was later
extended to the weighted case [17, 21]. This extension has since been widely studied and applied
across various fields, such as bargaining theory [7, 24, 34], water allocation [9, 19], climate agreements
[38], and more. One of the most important features of the NSW objective is that it offers a tradeoff
between the frequently conflicting demands of fairness and efficiency.

A special case for the valuations vi is when they are additive. The unweighted NSW problem
with additive valuations is an important topic in optimization and has received considerable interest.
Barman, Krishnamurthy, and Vaish [2] developed a (e1/e ≈ 1.445)-approximation algorithm that finds
an allocation that is both Pareto-efficient and envy-free up to one item (EF1). They showed that this
problem can be reduced to the case of identical valuations, where any EF1 allocation can achieve an
approximation ratio of e1/e ≈ 1.445. On the negative side, Garg, Hoefer, and Mehlhorn [12] established
a hardness of

√
8/7.

For the weighted case with additive valuations, Brown, Laddha, Pittu, and Singh [5] introduced
an approximation algorithm with a ratio of 5 · exp(2 log n + 2

∑
i∈A wi logwi). Later, Feng and Li

[11] presented an elegant (e1/e + ϵ)-approximation algorithm for the weighted case, using their novel
configuration LP and the Shmoys-Tardos rounding procedure developed in the context of unrelated
machine scheduling. The approximation ratio matches the best-known ratio for the unweighted case.

When the n valuation functions are additive and identical, Nguyen and Rothe [29] developed a
PTAS for the unweighted NSW problem. Later, Inoue and Kobayashi [20] gave an additive PTAS
for the problem, i.e., a polynomial-time algorithm that maximizes the Nash social welfare within an
additive error of ϵvmax, where vmax is the maximum utility of an item.

Li and Vondrak [26] developed the first constant approximation algorithm for unweighted NSW
with submodular valuations using convex programming. The ratio has been improved by Garg, Husic,
Li, Vega, and Vondrak [13] to (4+ϵ) using an elegant local-search-based algorithm. When additionally
n = O(1), by guessing the value and the O(1) largest items for each agent, and using the multilinear
extension of submodular functions, a e/(e − 1)-approximation can be achieved [16]. In the same
paper, [16] proved that unweighted NSW with submodular valuations is hard to approximate within
e/(e− 1)− ϵ. The hardness holds even for the case n = O(1).

For the weighted NSW problem with submodular valuations, [13] showed that the approximation
ratio of the local search algorithm becomes O(nwmax), where wmax := maxi∈[n] wi is the maximum
weight over the agents. In the new version [15] of the paper, the authors presented a (6e + ϵ)-

1If vi(∅) > 0 for some i ∈ N , we can create a “private” item ji for i which has 0-value to all agents other than i. We
replace the valuation of i with v′i, which is defined as follows: v′i(S) := vi(S)− vi(∅) if ji /∈ S and v′i(S) = vi(S \ ji) if
ji ∈ S.
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approximation algorithm with running time 2O(n logn)poly(m, 1/ϵ), which is polynomial when n =
O(1).

For the more general setting where the valuations are subadditive, Dobzinski, Li, Rubinstein, and
Vondrák [10] recently proposed a constant approximation algorithm when agents are unweighted,
provided that we have access to demand oracles for the valuation functions.

Our Result. In this paper, we give the first polynomial-time O(1)-approximation algorithm for
weighted Nash social welfare under the submodular valuations. The best result prior to this work was
the O(nwmax)-approximation due to Garg, Husic, Li, Vega, and Vondrak [13].

Theorem 1.1. For any ϵ > 0, there is a randomized (233+ϵ)-approximation algorithm for the weighted
Nash social welfare problem with submodular valuations, with running time polynomial in the size of
the input and 1

ϵ .

For convenience, we list the known approximation results for the NSW problem in Table 1.

Additive Submodular Subadditive

LB UB LB UB LB UB

Unweighted
√

8
7 [12] e1/e + ϵ [2] e

e−1 [16] 4 + ϵ [13] O(1)∗ [10]

Weighted e1/e + ϵ [11] 233 + ϵ (Theorem 1.1)

Table 1: Known Results for Nash social welfare. LB and UB stand for lower and upper bounds,
respectively. The result with ∗ requires demand oracles for valuation functions. When the function
is identical additive, the upper bound for the unweighted case is PTAS [20, 29]. When n = O(1),
the upper bounds for unweighted and weighted NSW with submodular valuations are respectively
e/(e− 1) [16] and 6e+ ϵ [15].

1.1 Overview of Our Techniques

Our algorithm leverages the configuration LP introduced in [11] for the additive valuation case. For
each agent i ∈ N and subset of items S ⊆M , we define a variable yi,S to indicate whether the set of
items assigned to i is precisely S. The objective of this LP is to minimize

∑
i,S yi,S · wi · ln vi(S), the

logarithm of the NSW objective. After solving the LP, we apply the rounding procedure from [25],
developed for the weighted completion time minimization problem in the unrelated machine scheduling
setting. Then we prove concentration bounds for the values obtained by each agent, using arguments
developed for pipage rounding.

To build intuition, let us focus on the unweighted case. For the special case where |M | = |N |,
the problem reduces to a maximum-weight bipartite matching problem with weights given by the
logarithm of values. So, any general algorithm for the problem must capture the maximum weight of
the bipartite matching algorithm as a special case. Interestingly, previous results showed that if one
is given the largest (i.e., the most valuable) item assigned to every agent, then an O(1)-approximation
algorithm is easy to obtain using local search [13] or LP rounding [14, 26]. For example, with this idea,
Garg, Husic, Li, Vega, and Vondrak [13] designed an elegant 4-approximation local search algorithm.
They first compute an initial matching of one item to every agent so as to maximize the NSW objective,
then assign the remaining items using local search with an endowed valuation function, and finally
rematch the initially assigned items to agents to maximize the final Nash social welfare. Unfortunately,
their algorithm fails to give an O(1)-approximation when the agents are weighted.

Our algorithm implements the idea of “matching largest items to agents” using the configuration
LP solution as a guide. We achieve a per-client guarantee, allowing us to give an O(1)-approximation
for the weighted NSW problem with submodular valuations. After obtaining an LP solution (y∗i,S)i,S ,
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for each agent i and configuration S, we designate the largest item in S as a “large” item for i, while
treating the remaining items as “small”. This creates a fractional assignment in which each agent
receives exactly one fractional large item. While maintaining marginal probabilities in our rounding
algorithm, we ensure that each agent gets exactly one large item, and the assignment of small items
are negatively correlated. That is, we select a random matching for large items.

If the large and small items were disjoint, the rounding algorithm would be straightforward. How-
ever, complications arise when an item may be large for one agent and small for another — or even
for the same agent in different configurations. This necessitates a correlated assignment strategy for
large and small items. This is where we employ the iterative rounding procedure of [25]. We construct
a bipartite multi-graph between agents and items, with two edge types: marked edges for large items
and unmarked edges for small items. During iterative rounding, we identify either a simple cycle of
marked edges or a pseudo-marked path – a simple path of marked edges with two unmarked edges
at the ends – and apply rotation or shifting operations on the cycle or path in each iteration. This
process ultimately yields an integral assignment.

To analyze the approximation ratio, we focus on each agent i and analyze E[ln(vi(T ))], where T
is the set of items assigned to i. Note that T includes exactly one large item, respecting the marginal
probabilities. Let T S denote the remaining items, i.e., the small items assigned to i. The assignments of
the large item and the small items may be positively correlated, so we analyze the worst-case scenario
for this correlation. However, the assignments of the small items are negatively correlated; more
precisely, they are determined through a pipage-rounding procedure. Using the concave pessimistic
estimator technique from [18] and the submodularity of the function vi, we can establish concentration
bounds for vi(T

S). With the bounds, we can lower bound E[ln(vi(T ))] by
∑

S y∗i,S ln vi(S)−O(1).

Organization. The rest of the paper is organized as follows. We introduce some preliminaries in
Section 2, describe our algorithm in Section 3, and give its analysis in Section 4. For a smoother flow
in the main text, we defer some proofs to the appendix.

2 Preliminaries

Definition 2.1 (Monotone Submodular Functions). Let M be the ground set (item set) and f : 2M →
R≥0 be a function defined over M .

• f is submodular if for any S, T ⊆M , f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ).

• f is monotone if f(S) ≤ f(T ) whenever S ⊆ T .

For convenience, we slightly abuse the notation and use f(j) to represent f({ j }).

2.1 Truncations of Submodular Functions

Definition 2.2 (Truncated Function). Given a monotone submodular function f : 2M → R≥0 with
f(∅) = 0 and a real R > 0, define f (R) : 2M → R≥0 to be the following function:

f (R)(S) := Eθ∼[0,1]

[
f

({
j ∈ S : θ ≤ R

f(j)

})]
, ∀S ⊆M.

We say f (R) is the function obtained from f by truncating individual values by R.

The truncated function provides a trackable lower bound for the valuation function. After truncat-
ing the function, the marginal values will be bounded by R; this allows us to apply the concentration
bound. This is given in the following lemma:

Lemma 2.3. Let f : 2M → R≥0 be a monotone submodular function and a R > 0 be a real. Let
R′ ≥ R be a real and S ⊆ M be a non-empty set such that maxj∈S f(j) ≤ R′. Then, the following
properties are true:
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(2.3a) f (R) is a monotone submodular function such that f (R)(j) ≤ R for all j ∈M .

(2.3b) f(S) ≥ f (R)(S) ≥ R
R′ · f(S).

Proof. It is easy to see that f (R) is a monotone function. The truncated function f (R) can be regarded
as a linear combination of submodular functions, and thus, it is also a submodular function. For any
j ∈M , we have f (R)(j) = min{ R

f(j) , 1} · f(j) ≤ R. Thus, (2.3a) holds.

For (2.3b), the proof of f(S) ≥ f (R)(S) is straightforward. If θ ≤ R
R′ , then { j ∈ S : θ ≤ R

f(j) } = S

as f(j) ≤ R′ for all j ∈ S. Thus, f (R)(S) ≥ R
R′ · f(S). This finishes the proof of Lemma 2.3.

We remark that when the valuation function is additive, the definition of the truncated function
can be simplified: f (R)(S) :=

∑
j∈S min{R, f(j)}.

2.2 Extensions of Submodular Functions

We shall also consider the multilinear and concave (maximum) extensions of a submodular function,
which are widely used in the literature. The concave extension is also known as the “Configuration
LP” extension in the literature.

Definition 2.4 (Multilinear Extension). Given a monotone submodular function f : 2M → R≥0, its
multilinear extension F : [0, 1]M → R≥0 is defined as:

F (x) =
∑
S⊆M

f(S)
∏
j∈S

xj

∏
j∈(M\S)

(1− xj).

Definition 2.5 (Concave Extension). Given a monotone submodular function f : 2M → R≥0, its
concave extension f+ : [0, 1]M → R≥0 is:

f+(x) = max

∑
S⊆M

αSf(S) :
∑
S⊆M

αS ≤ 1;∀S ⊆M,αS ≥ 0; ∀j ∈M,
∑

S:j∈S

αS = xj

 .

The following relation between the multilinear and concave extensions has been shown in [36,
Lemma 3.7, 3.8].

Lemma 2.6 ([36]). Given a monotone non-negative submodular function f , its multilinear extension
F , and its concave extension f+, and a point x ∈ [0, 1]M , we have f+(x) ≥ F (x) ≥ (1− 1

e ) · f
+(x).

2.3 Concentration Bound for Submodular Functions in Pipage Rounding

We consider the following modified version of the pipage rounding procedure described in Algorithm 1.
This enables us to use the Chernoff-type concentration bounds stated in Theorem 2.7. Suppose we
are guaranteed that the algorithm terminates in the finite number of iterations with probability 1.
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Algorithm 1 Modified Pipage Rounding

Input: x∗ ∈ [0, 1]n̄.
Output: an integral x ∈ {0, 1}n̄.
1: x← x∗.
2: while x is not integral do
3: do one of the two operations arbitrarily:

Operation 1:
4: choose one coordinate a ∈ [n̄] with xa ∈ (0, 1), two reals δ1 ∈ (0, xa] and δ2 ∈ (0, 1− xa].
5: with probability δ2

δ1+δ2
do: xa ← xa − δ1, else do: xa ← xa + δ2.

Operation 2:
6: choose two distinct coordinates a, b ∈ [n̄] with xa, xb ∈ (0, 1), two reals δ1 ∈ (0,min{xa, 1−

xb}], and δ2 ∈ (0,min{1− xa, xb}].
7: with probability δ2

δ1+δ2
do: xa ← xa − δ1, xb ← xb + δ1.

8: else do: xa ← xa + δ2, xb ← xb − δ2.

9: return x

We shall use x to denote the final x vector returned by Algorithm 1. It can be shown that xj ’s are
negatively correlated following a similar argument to that used in the pipage rounding procedure by [8].
However, it is unknown whether the negative correlation alone suffices to establish the Chernoff-type
concentration bounds we need. Therefore, we provide a direct proof of the concentration bound for x
using the concave estimator technique from [18]. We prove the following theorem in Appendix A.1:

Theorem 2.7. Let v : 2[n̄] → R≥0 be a monotone submodular function with marginal values at most
1, and F : [0, 1]n̄ → R≥0 be the multilinear extension of v. Let x∗ ∈ [0, 1]n̄, µ = F (x∗), x ∈ {0, 1}n̄ be
the output of Algorithm 1 for the input x∗, and U = {i ∈ [n̄] : xi = 1}. Then, for any δ ∈ (0, 1), we
have

Pr[v(U) ≤ (1− δ)µ] ≤ e−δ2µ/2.

3 Iterative Rounding for Weighted Submodular Nash Social
Welfare using Configuration LP

In this section, we give our algorithm for the weighted submodular NSW problem. We describe
the configuration LP relaxation in Section 3.1, the construction of the bipartite multi-graph G in
Section 3.2, and the iterative rounding algorithm in Section 3.3 respectively.

3.1 LP Formulation

We start with the configuration LP relaxation (Conf-LP) for our problem, which is the same as the
one used in [11], except now, each vi is a submodular function. In the correspondent integer program,
we have a variable yi,S ∈ { 0, 1 } for every agent i ∈ N and set S ⊆ M indicating if the set of items
assigned to agent i is precisely S or not. The objective is to maximize the logarithm of the weighted
Nash social welfare, which is

∑
i∈N,S⊆M wi · yi,S · ln(vi(S)). (1) ensures that each item is assigned to

exactly one agent. (2) ensures that each agent is given precisely one item set.
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max
∑

i∈N,S⊆M

wi · yi,S · ln(vi(S)) (Conf-LP)

s.t. ∑
S:j∈S

∑
i∈N

yi,S = 1, ∀j ∈M (1)

∑
S⊆M

yi,S = 1, ∀i ∈ N (2)

yi,S ≥ 0, ∀i ∈ N,S ⊆M (3)

There are an exponential number of variables in the LP. Using standard techniques, we can consider
the dual of the LP and design a separation oracle for it. However, unlike the additive valuation case, for
which the separation oracle incurs an additive ϵ error, the error becomes ln( e

e−1+ϵ) for the submodular
valuation case (this corresponds to a multiplicative factor of ( e

e−1+ϵ) for the weighted NSW objective).
This comes from the approximation factor for the problem of maximizing a monotone submodular
function with a knapsack constraint [33]. The proof of the lemma is deferred to Appendix B.1:

Lemma 3.1. For any constant ϵ > 0, the Configuration LP (Conf-LP) can be solved in polynomial
time within an additive error of ln( e

e−1 + ϵ).

3.2 Construction of Bipartite Multi-Graph G = (N ∪M,E) with Marked
and Unmarked Edges

After we solve (Conf-LP), we obtain a solution y∗ := (y∗i,S)i∈N,S⊆M , represented using the list of
non-zero coordinates. From now on, we say S ⊆M is a configuration for an agent i if y∗i,S > 0.

Definition 3.2 (Large and Small Items). For each agent i and configuration S for i, let κ
(i)
S be the

largest item in S, i.e., κ
(i)
S := argmaxj∈S vi(j). We say j is a large item for i if j = κ

(i)
S for some

configuration S for i. Let ML
i be the set of large items for agent i. We say j is a small item for i if

j ∈ S \ κ(i)
S for some configuration S for i. Let MS

i be the set of small items for i.

Note that an item may be both a large and small item for an agent i. It may also happen that for
a small item j, and a large item j′ for an agent i, we have vi(j) > vi(j

′).

Our rounding algorithm is similar to that of [25] for the unrelated machine weighted completion
time problem. We build a bipartite multi-graph G := (N ∪M,E) between agents N and items M ,
where each edge in E is either marked or unmarked. We also define a vector x∗ over the edges. For
each agent i and item j ∈ ML

i , we create a marked edge ij with x∗-value x∗
ij :=

∑
S:κ

(i)
S =j

y∗i,S . For

each agent i and item j ∈MS
i , we create an unmarked edge with x∗-value x∗

ij :=
∑

S:j∈S\κ(i)
S

y∗i,S . So,

there might be two parallel edges ij between an agent i and an item j; in this case, one of them is
marked, and the other is unmarked. From now on, when we refer to an edge ij, we assume we know
its identity, which will decide if j is large or small.

Notice that the constructed vector x∗ has the following properties:

(i) For any item j ∈M , we have
∑

ij∈E x∗
ij = 1.

(ii) For any agent i ∈ N , we have
∑

j∈ML
i
x∗
ij = 1.

The first property is due to Constraint (2) of (Conf-LP), and the second is due to Constraint (1) of
(Conf-LP). An example can be found in Figure 1.
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j1 j2

j2 j1

j1

j3

j3 j3

S1 S2 S3 S1 S4

0.3 0.7 0.3 0.4 0.3

a1

a2

j1

j2

j3
a1 a2

v1(j1) ≥ v1(j2) ≥ v1(j3) v2(j3) ≥ v2(j2) ≥ v2(j1)

0.3

0.7

0.3

0.3

0.7

0.30.4

G := (N ∪M,E)

κ
(i)
S

marked edges

unmarked edges

Figure 1: Illustration for the constructed bipartite multi-graph. There are two agents and three items,
and the agents’ preference for items is shown in the figure. Suppose that, after solving (Conf-LP),
we obtain y∗1,S1

= 0.3, y∗1,S2
= 0.7, y∗2,S3

= 0.3, y∗2,S1
= 0.4, y∗2,S4

= 0.3. By agents’ preference, we

know that ML
1 = { j1, j2 } and ML

2 = { j1, j3 }, they are marked by gray cycle. The small item set
is MS

1 = { j3 } ,MS
2 = { j1, j2 }. Then, we can create a bipartite multi-graph as stated above. In

the right part of the figure, we use a solid line to represent the marked edges (edges between agents
and large items) and a dashed line to represent the unmarked edges (edges between agents and small
items). The example shows two edges between agent a2 and item j1; thus, the bipartite graph can be
a multi-graph. Verifying the two properties of the constructed vector x∗ is also easy.

3.3 Rounding x into an Integral Solution

Our iterative rounding algorithm is also similar to that of [25]. During the algorithm, we maintain
a vector x ∈ [0, 1]E , which is set to x∗ initially. In each round, we find either a marked cycle or a
pseudo-marked path in fsupp(x), where we shall use fsupp(x) := { ij ∈ E : xij ∈ (0, 1) } to denote the
set of edges in E with strictly fractional x values. We apply the rotation/shifting operation to the
structure we found until x becomes integral. The operations we use here are slightly simpler than those
in [25] as we maintain the total x-values of marked edges incident to an agent, while the algorithm in
[25] needs to maintain the total “volume”, which makes the procedure more complicated.

First, we define marked cycles and pseudo-marked paths. In the remainder of this subsection, we
use i and j to represent an agent and an item, respectively.

Definition 3.3 (Marked Cycle and Pseudo-Marked Path). Given a spanning sub-graph G′ = (N ∪
M,E′) of G, a marked cycle in G′ is a simple cycle in G′ that consists of marked edges only. A
pseudo-marked path (i1, j1, . . . , jk, ik+1), k ≥ 1 is a (not-necessarily-simple) path of G′ such that

(3.3a) the subpath (j1, . . . , jk) is a simple path that consists of marked edges only, and

(3.3b) the edges (i1, j1) and (jk, ik+1) are distinct unmarked edges.

For a pseudo-marked path, we do not impose any other conditions that are not stated in the
definition. For example, i1 and/or ik+1 may be the same as some agent in { i1, i2, . . . , ik−1 }; in this
case, the pseudo path shall contain cycles with both marked and unmarked edges. It may also happen
that i1 = ik+1. It is also possible that k = 1, in which case the pseudo path consists of two distinct
unmarked edges, which implies i1 ̸= i2.

Given any vector x ∈ [0, 1]E , we define G(x) := (V, fsupp(x)) to be the spanning graph of x
containing the edges with x-values strictly between 0 and 1. The iterative rounding algorithm is
described in Algorithm 2.

We first assume that in Step 3, we can always find a marked cycle or a pseudo-marked path. Then,
it is easy to see that we maintained the following two invariants

(I1)
∑

ij∈E xij = 1 for every item j ∈M .

8



Algorithm 2 Iterative Rounding Algorithm for x∗

Input: the bipartite multi-graph G := (N ∪M,E) and the fractional vector x∗ := (x∗
e)e∈E .

Output: an integral solution x.
1: x← x∗.
2: while there exists a variable xe such that 0 < xe < 1 do
3: find either a marked cycle (i1, j1, i2, j2, . . . , ik, jk, ik+1 = i1) or a pseudo-marked path

(i1, j1, i2, j2, . . . , ik, jk, ik+1) in G(x).

4: δ1 ← min
{
min
a∈[k]

xiaja , min
a∈[k]

(1− xjaia+1)

}
, δ2 ← min

{
min
a∈[k]

(1− xiaja), min
a∈[k]

xjaia+1

}
.

5: with probability
δ2

δ1 + δ2
do: for every a ∈ [k] do: xiaja ← xiaja − δ1, xjaia+1

← xjaia+1
+ δ1.

6: else do: for every a ∈ [k] do: xiaja ← xiaja + δ2, xjaia+1 ← xjaia+1 − δ2.

7: return x.

(I2)
∑

j∈ML
i
xij = 1 for every agent i ∈ N .

Then, the algorithm terminates in polynomial time as the x-value of at least one edge becomes integral
in each iteration.

It remains to show that the goal in Step 3 can be achieved:

Lemma 3.4. Let x be the vector before Step 3 in some iteration of the while loop; so x is not integral.
Then, G(x) contains a marked cycle or a pseudo-marked path.

Proof. If the marked edges in G(x) contain a cycle, then we are done. Assume this does not happen;
so the marked edges form a forest.

If there is at least one marked edge in G(x), then we can take a non-empty path of marked edges
between two leaf vertices in the forest. Due to Invariant (I2), both leaves must be items. So, let
j1, i2, j2, i3, . . . , ik, jk be the non-empty simple path of marked edges; j1 and jk are leaves in the forest.
Due to Invariant (I1), there must be a marked edge incident to j1 in G(x); the same holds for jk.
So, concatenating the two marked edges and the path j1, i2, j2, i3, . . . , ik, jk gives us a pseudo-marked
path.

Now suppose there are no marked edges in G(x). As x is not integral, there is some item j which is
not integrally assigned in x. Then j must be incident to two distinct unmarked edges due to Invariant
(I1). The two unmarked edges form a pseudo-marked path.

For every agent i, let xi,umk be the vector x restricted to the set of unmarked edges incident to i.
If we only focus on how xi,umk changes, then Algorithm 2 falls into the algorithmic template stated
in Algorithm 1. In particular, if in an iteration we rotate a marked cycle, then xi,umk is unchanged.
Suppose we shift a pseudo-marked-path (i1, j1, . . . , ik, jk, ik+1) in an iteration. If i /∈ {i1, ik+1}, then
xi,umk is unchanged; if i = i1, i ̸= ik+1 or i ̸= i1, i = ik+1, then Operation 1 is performed in the
iteration in Algorithm 2; if i = i1 = ik+1, then Operation 2 is performed. Thus, we can apply the
concentration bound over xi,umk using Theorem 2.7.

4 Analysis of the Approximation Ratio

In this section, we analyze the approximation ratio achieved by the algorithm. For every e ∈ E, let
Xe ∈ {0, 1} be the value of xe returned by Algorithm 2. We first summarize some of the properties
we have for the random variables Xe’s.

Observation 4.1. The following properties hold:

(4.1a) For each e ∈ E, we have E[Xe] = x∗
e.

9



(4.1b) For each item j, we have
∑

ij∈E Xij = 1 with probability 1.

(4.1c) For each agent i, we have
∑

j∈ML
i
Xij = 1 with probability 1.

Proof. Fix an edge e ∈ E. Focus on an iteration of the loop in Algorithm 2. Let xold
e and xnew

e

be the value of xe at the beginning and end of the iteration respectively. Then it is easy to see that
E[xnew

e |xold
e ] = xold

e . Property (4.1a) then follows. Property (4.1b) and (4.1c) follow from Invariant (I1)
and (I2), respectively.

Till the end of the section, we fix an agent i ∈ N and let T be the set of items assigned to i by our
algorithm. As i is fixed, we omit subscripts i from most of the notations: we use v(S), κ(S), y∗S ,M

L

and MS to denote vi(S), κi(S), y
∗
i,S ,M

L
i and MS

i respectively. Notice that by (4.1c) of Observation 4.1,

T contains exactly one large item, i.e., an item in ML. We use kL to denote the unique large item in
T . Let T S := T ∩MS be the set of small items assigned to the agent i. So, T = {kL} ⊎ T S. The goal
of the section is to prove Lemma 4.2.

Lemma 4.2. E
[
ln(v(T ))

]
≥
∑
S

y∗S ln v(S)−
(
3 +

26

e3
+ ln 2

)
.

We show how the lemma implies Theorem 1.1.

Proof of Theorem 1.1. In this proof, we consider all agents i ∈ N and thus we include the subscript
i in all notations. Also, let Ti denote the set of items assigned to the agent i by our algorithm. We
apply Lemma 4.2 to each agent i ∈ N , and by the linearity of expectation and

∑
i∈N wi = 1, we have:

E

[∑
i∈N

wi · ln vi(Ti)

]
≥

∑
i∈N,S⊆M

wi · y∗i,S ln vi(S)−
(
3 +

26

e3
+ ln 2

)
.

Raising both sides to the exponent and applying Jensen’s inequality, we have:

E

[∏
i∈N

vi(Ti)
wi

]
≥ exp

(
−
(
3 +

26

e3
+ ln 2

))
· exp

 ∑
i∈N,S⊆M

wi · y∗i,S ln vi(S)

 .

By Lemma 3.1, we have:

exp

 ∑
i∈N,S⊆M

wi · y∗i,S ln vi(S)

 ≥ OPT ·
(
1− 1

e
− ϵ

)
.

Thus, we get:

E

[∏
i∈N

vi(Ti)
wi

]
≥ exp

(
−
(
3 +

26

e3
+ ln 2

))
·
(
1− 1

e
− ϵ

)
·OPT.

Therefore, the overall approximation factor is ( e
e−1 + ϵ) · 2 · exp(3 + 26/e3) < 233 + ϵ.

Now, it remains to show Lemma 4.2. To this end, we first find a lower and upper bound for the
value of E[ln v(T )] and

∑
S y∗S ln v(S); see Section 4.1. Then, we shall compare these two bounds in

Section 4.2 to obtain Lemma 4.2.

4.1 Input and Output Distributions

We have two distributions over sets of items: the input distribution, which is the distribution of
configurations for i, and the output distribution, which corresponds to the distribution for the set of
items assigned to agent i by Algorithm 2. We set up notations for both distributions.
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Notations and Histogram for Input Distribution. In the input distribution, the probability for
a set S is y∗S ; recall that a configuration S for i is a set S with y∗S > 0. So the total probabilities over
all configurations S is 1 by the LP constraint (2). We define a function π : [0, 1]→ 2M as follows. We
sort all the configurations S in descending order of κ(S), breaking ties arbitrarily. Let ≺ denote this
order: S′ ≺ S if S′ appears before S in the order, and S′ ⪯ S if and only if S′ ≺ S or S′ = S. Then,
π is defined as follows: π(t) for every t ∈ (0, 1] is the first set S in the order such that

∑
S′⪯S y∗S′ ≥ t.

Let π(0) be the first S in the order with y∗S > 0. For notational convenience, we define κt := κ(π(t))
for every t ∈ [0, 1]. Let ut = v(κt) and Bt = v(πt \ κt).

It is convenient to visualize the notations using a histogram, denoted in the subfigure (i) of Figure 2.
We create a rectangle for each configuration S with width y∗S > 0 and height ut +Bt = v(κt) + v(πt \
κt) ≥ v(πt). The bottom portion of the rectangle of height ut is colored dark, and the top portion of
height Bt is colored white. The rectangles are arranged horizontally above the interval [0, 1] according
to the order ≺.

Notations and Histograms for Output Distribution. Notice that the agent i is assigned exactly
one large item by Property (4.1c) of Observation 4.1. So our main focus is on the set T S of small items
assigned to i. For each t ∈ (0, 1], we define Ct as the largest number A such that Pr[v(T S) ≥ A] ≥ x.
Let C0 = limt→0+ Ct.

We can create two histograms for the output distribution, one for the large items, and the other
for small items. See the subfigure (ii) of Figure 2. Due to Property (4.1a) of Observation 4.1, the
histogram for large items is the same as the dark portion of the histogram for the input distribution:
the height at position t is ut. So, for each set U that T S can take, we create a rectangle of height v(U)
and width Pr[T S = U ], and the rectangles are sorted in descending order of v(U) values from left to
the right in the histogram. In the histogram for small items, the height at position t is Ct.

We remark that we disregard the correlation between the large item and small items assigned to
i, by creating two separate histograms. In both histograms, we sort the rectangles according to the
heights. So, the large item and the small item set at position t in their respective histogram may not
occur simultaneously.

1 y∗S

v(S)

ut

π(t)

π(t) \ κtBt

π(0)

Pr

v(S)

Ct

Pr[T S = U ]

t

U ⊆ MS

0 0 a b 1
(i) (ii)

κt
ut

κt

t

Figure 2: Illustration for the π(·) function and Ct, which are shown in the subfigure (i) and (ii),
respectively. For simplicity, the figure considers the case when the valuation function v is additive. In
the subfigure (i), for each set S ⊆ M with y∗S > 0, we have a rectangle. We sort these rectangles in
non-increasing order according to the value of the largest item in each set. In each rectangle, the gray
part is the size of the largest item, and the remaining part is the small item part. In the subfigure (ii),
for each possible algorithm’s output of small items, we have a rectangle. We also sort these rectangles
in non-increasing order according to the value of each set.
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With the notations set up, we can relate the two quantities in Lemma 4.2 with the quantities we
introduced:

Lemma 4.3.
∑

S y∗S ln v(S) ≤
∫ 1

0
ln(ut +Bt) dt.

Proof. Consider any t ∈ (0, 1), and due to the subadditive property of the valuation function, we

have v(π(t)) ≤ ut + Bt. So,
∫ 1

0
ln v(π(t)) dt ≤

∫ 1

0
ln(ut + Bt) dt. Observe that

∑
S y∗S ln v(S) =∫ 1

0
ln v(π(t)) dt, as desired. We remark that the inequality above becomes an equality when v is

additive.

Lemma 4.4. E[ln v(T )] ≥
∫ 1

0
ln(ut + Ct) dt− ln 2.

Proof. Before proving the lemma, we first show the useful properties of two sequences.

Claim 4.5. Consider two non-increasing nonnegative sequences {aj}ℓj=1 and {bj}ℓj=1, then for any
permutation σ on [ℓ], we have

ℓ∑
j=1

ln(aj + bσ(j)) ≥
ℓ∑

j=1

ln(aj + bj),

where σ(j) is the index at the j-th position of permutation σ.

The Claim 4.5 can be proved via the exchange argument; a proof can be found in [30, Theorem
2]. Now, suppose that the Claim 4.5 is correct. We have v(T ) ≥ v(kL) and v(T ) ≥ v(T S) by the
monotonicity of v, so it suffices to show that

E[ln(v(kL) + v(T S))] ≥
∫ 1

0

ln(ut + Ct) dt. (4)

To see that, we assume Pr[T S = T̄ , kL = k̄] for any T̄ ⊆ MS and k̄ ∈ ML is an integer multiple
of ∆, for a sufficiently large integer ∆ > 0. We construct two multi-sets ZL and ZS of ∆ integers as
follows. For every pair (T̄ , k̄) with positive Pr[T S = T̄ , kL = k̄], we add ∆Pr[T S = T̄ , kL = k̄] copies
of v(T̄ ) to ZL, and ∆Pr[T S = T̄ , kL = k̄] copies of v(k̄) to ZS. Let the sequences (a1, a2, . . . , a∆) and
(b1, b2, . . . , b∆) respectively be the sets ZL and ZS sorted in non-increasing order. After scaling up by

∆, the left-side of (4) becomes
∑∆

j=1 ln(aj + bσ(j)) for some permutation σ of [∆], and the right-side

becomes
∑∆

j=1 ln(aj + bj). (4) then follows from Claim 4.5.

With the two lemmas, it remains for us to compare
∫ 1

0
ln(ut +Bt) dt with

∫ 1

0
ln(ut + Ct) dt.

4.2 Comparing
∫ 1

0
ln(ut +Bt) dt and

∫ 1

0
ln(ut + Ct) dt

By (2.3b) of Lemma 2.3, we know that the truncated function f is a lower bound of v. We shall use
the lower bound f in our analysis as the truncation gives an upper bound on the values of individual
items, which allows us to apply the Chernoff-type concentration bound stated in Theorem 2.7. The
following helper lemma will be useful later, which suggests a lower bound of the small items’ expected
value under the truncated valuation function.

Lemma 4.6. Let ρ ∈ (0, 1), let f := v(uρ+Cρ) be the function obtained from v by truncating individual
values by uρ + Cρ, as in Definition 2.2. Then we have∫ ρ

0

f(π(t) \ κt) dt ≥ (uρ + Cρ) ·
∫ ρ

0

Bt

ut + Ct
dt.
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Proof. We focus on any t ∈ (0, ρ), and we have maxj∈π(t)\κt
v(j) ≤ ut ≤ ut + Ct. Thus, by (2.3b) of

Lemma 2.3, we have

f(π(t) \ κt) ≥
uρ + Cρ

ut + Ct
· v(π(t) \ κt) =

Bt

ut + Ct
· (uρ + Cρ).

Therefore, we have∫ ρ

0

f(π(t) \ κt) dt ≥
∫ ρ

0

Bt

ut + Ct
· (uρ + Cρ) dt = (uρ + Cρ) ·

∫ ρ

0

Bt

ut + Ct
dt.

We then prove the following key lemma:

Lemma 4.7. For every λ ≥ 0, we have∫ 1

0

1
{
lnBt > ln(ut + Ct) + λ

}
dt ≤ (6λ+ 1)e−λ.

Proof. We can assume that λ ≥ 1 since otherwise (6λ+ 1)e−λ > 1 and the lemma holds trivially. For
each t ∈ (0, 1), we define θt = 1

{
lnBt > ln(ut+Ct)+λ

}
∈ { 0, 1 }, i.e., θt = 1 if lnBt > ln(ut+Ct)+λ;

otherwise, θt = 0. It is sufficient to prove
∫ 1−e−λ

0
θt dt ≤ 6λe−λ. Assume towards the contradiction

that
∫ 1−e−λ

0
θt dt > 6λe−λ. Then, we can find a z ∈ (0, 1− e−λ) such that

∫ z

0
θt dt = 6λe−λ. Note that

θz = 1; so, we have Bz

uz+Cz
> eλ.

Now, we define the truncated function f using the value of uz +Cz, i.e., f := v(uz+Cz). We aim to
use the concentration bound proved in Theorem 2.7, which bounds the value of small items deviating
from its multilinear extension.

Let xumk := (x∗
ij)j∈MS

i
be fractional assignment for small items to agent i. By Lemma 2.3, we

know that f is a monotone submodular function. Let F (·) be the multilinear extension of the function
f . Our goal is to lower bound the value of F (xumk) so that we can use the concentration bound. Let

f+ : [0, 1]M
S → R≥0 be the concave extension of f , defined in Definition 2.5.

Now, we consider the small item part of the (Conf-LP)’s solution (y∗S)S⊆MS . By the definition

of xumk and (Conf-LP)’s constraints, xumk and (y∗S)S⊆MS must satisfy all constraints stated in the
concave extension in Definition 2.5, i.e., (i)

∑
S⊆MS y∗S ≤ 1 since (2) of (Conf-LP); (ii) for all small

item set S ⊆ MS, y∗S ≥ 0; (iii) for each small item j ∈ MS,
∑

S:j∈S y∗S ≤ xumk
j . Thus, we know that

f+(xumk) is at least as large as the expected value of small items in the LP solution, i.e.,

f+(xumk) ≥
∫ 1

0

v(π(t) \ κt) dt ≥
∫ 1

0

f(π(t) \ κt) dt ≥
∫ z

0

θt · f(π(t) \ κt) dt.

Applying Lemma 4.6 by setting ρ as z, we have:∫ z

0

θt · f(π(t) \ κt) dt ≥ (uz + Cz) ·
∫ z

0

θt ·
Bt

ut + Ct
dt ≥ (uz + Cz) · eλ ·

∫ z

0

θt dt = (uz + Cz) · 6λ.

By Lemma 2.6, we have

F (xumk) ≥
(
1− 1

e

)
f+(xumk) ≥ (uz + Cz) · 6

(
1− 1

e

)
λ.

Notice that f(·) is a submodular function such that the maximum value of each single item is at most

uz + Cz. Thus, the marginal value of f(·)
uz+Cz

is in [0, 1]. Thus, the concentration bound stated in
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Theorem 2.7 works for f(·)
uz+Cz

. Then, we have the following inequalities:

Pr[v(T S) < λ(uz + Cz)]

≤ Pr[f(T S) < λ(uz + Cz)] [f(T S) ≤ v(T S)]

= Pr

[
f(T S)

uz + Cz
< λ

]
= Pr

[
f(T S)

uz + Cz
<

(
1− 5e− 6

6(e− 1)

)(
6(1− 1

e
)λ

)]
≤ exp

(
−
( 5e−6
6(e−1) )

2 · 6(1− 1
e )λ

2

)
[Theorem 2.7 with δ =

5e− 6

6(e− 1)
, µ ≥ 6(1− 1

e
)λ]

≤ e−λ.

Thus, with probability at least 1−e−λ, we have v(T S) ≥ λ(uz+Cz) > uz+Cz since λ ≥ 1. We use
t∗ to represent 1− e−λ. Recall that the definition of Ct is the largest A such that Pr[v(T S) ≥ A] ≥ t
holds. Therefore, we have Ct∗ > uz + Cz ≥ Cz. Notice that z < 1 − e−λ = t∗. This contradicts the
fact that Ct is non-increasing over t.

Now, we are ready to bound the gap between the expected value of the LP solution and the solution
outputted by Algorithm 2.

Lemma 4.8.

∫ 1

0

(
ln(ut +Bt)− ln(ut + Ct)

)
dt ≤ 3 +

26

e3
.

Proof. We have the following inequality:∫ 1

0

(ln(ut +Bt)− ln(ut + Ct)) dt

≤
∫ ∞

0

Pr

[
ut +Bt

ut + Ct
> eλ

]
dλ ≤

∫ ∞

0

Pr

[
Bt

ut + Ct
> eλ − 1

]
dλ [ut ≤ ut + Ct]

≤ 3 +

∫ ∞

3

Pr

[
Bt

ut + Ct
> eλ − 1

]
dλ ≤ 3 +

∫ ∞

3

Pr

[
Bt

ut + Ct
> eλ−1/e3

]
dλ

= 3 +

∫ ∞

3−1/e3
Pr

[
Bt

ut + Ct
> eλ

]
dλ ≤ 3 + 1/e3 +

∫ ∞

3

Pr

[
Bt

ut + Ct
> eλ

]
dλ

≤ 3 + 1/e3 +

∫ ∞

3

(6λ+ 1)e−λ dλ [by Lemma 4.7]

= 3 +
26

e3
.

Now, we are ready to show Lemma 4.2.

Proof of Lemma 4.2. By Lemma 4.3, Lemma 4.4, and Lemma 4.8, we immediately obtain the following
inequalities:

E[ln v(T )]−
∑
S

y∗S ln v(S) ≥
∫ 1

0

ln(ut + Ct) dt−
∫ 1

0

ln(ut +Bt) dt− ln 2

≥ −
(
3 +

26

e3
+ ln 2

)
.

This finishes the proof of Lemma 4.2.
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5 Conclusion

We study the problem of maximizing the weighted Nash social welfare under submodular valuations
and give a (233+ ϵ)-approximate algorithm for the problem, which is the first constant approximation
for the problem. It improves upon the previous best-known result of O(nwmax). Our work leaves
several interesting future directions.

It would be interesting to improve the approximation ratio to a small constant. The current
best approximation ratio for unweighted Nash social welfare with submodular valuations is (4 + ϵ)
approximation [13]. There is a huge gap between the weighted and unweighted cases.

It is also interesting to consider the weighted NSW problem for more general valuations, such as
XOS or subadditive valuations, where the algorithm is assumed to have access to demand oracles to
these valuations. For the weighted case with additive valuation, an (e1/e + ϵ)-approximation is known
to exist [11], matching the best-known ratio for the unweighted case. This work extends the constant-
factor approximation to submodular valuations. Extending this result further beyond the submodular
case remains an intriguing open question.
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Social Welfare by Matching and Local Search. In Proceedings of the 55th Annual ACM Symposium
on Theory of Computing, STOC 2023, page 1298–1310, New York, NY, USA, 2023. Association
for Computing Machinery.
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A Missed Proofs from Section 2

A.1 Proof of Theorem 2.7

In this section, we prove Theorem 2.7, which shows that the randomized variables produced by Al-
gorithm 1 satisfy the Chernoff-type concentration bound. We shall utilize the concave pessimistic
estimator technique developed in [18]. Let x∗ ∈ [0, 1]n̄, v : 2[n̄] → R≥0, F : [0, 1]n̄ → R≥0, µ = F (x∗),
x, U and δ ∈ (0, 1) be as defined in the theorem.

We shall use the same concave pessimistic estimator as [18]:

gt,θ(x) := e−θt · EV∼D(x)

[
eθv(V )

]
,∀x ∈ [0, 1]n̄,

where t := (1 − δ)µ, θ := ln(1 − δ) < 0 and D(x) denotes the product distribution over 2[n̄] where
PrV∼D(x)[i ∈ V ] = xi for every i ∈ [n̄].

Lemma A.1 ([18]). The concave pessimistic estimator has the following properties:

(A.1a) for every integral x ∈ {0, 1}[n̄] and the set U = {i ∈ [n̄] : xi = 1}, we have 1{v(V ) ≤ t} ≤
gt,θ(x);

(A.1b) gt,θ(x
∗) ≤ exp(−δ2µ/2);

(A.1c) the function gt,θ is concave on the direction (ea − eb) for any a, b ∈ [n̄];

(A.1d) the function gt,θ is linear on the direction ea for any a ∈ [n̄].

One can imagine that gt,θ estimates the probability that a bad event (v(U) ≤ t) happens. We
remark that (A.1a) of Lemma A.1 is followed by the definition of the concave pessimistic estimator.
The (A.1b) of Lemma A.1 is the standard proof for Chernoff bound. In [18, Claim B.1.], they showed
that h(V ) := eθf(V ),∀V ⊆ [n̄] is a supermodular function if f : 2V → R is submodular. Thus, gt,θ the
multilinear extension of the supermodular function eθv. It has been shown in [6] that F (·) is convex
on the direction (ea−eb) if F is a multilinear extension of a submodular function. Thus, (A.1c) holds
by noting that the negation of a supermodular function is submodular. Since gt,θ(·) is a multilinear
extension, gt,θ(·) is linear on any direction ea. This proves (A.1d).

Now, we show that our rounding algorithm has a nice property (Lemma A.2), which is crucial for
Theorem 2.7. Lemma A.2 suggests that the probability of bad events (the randomized set has a low
value) occurring does not increase as Algorithm 1 runs.

Lemma A.2. Given any function f : [0, 1]n̄ → R≥0 such that (i) f is concave on the direction (ea−eb)
for any a, b ∈ [n̄] and (ii) f is concave on the direction (ec) for any c ∈ [n̄], then E[f(x)] ≤ f(x∗).

Proof of Theorem 2.7. Combining Lemma A.1 and Lemma A.2, we have the following inequalities:

Pr[v(U) ≤ t]
(i)

≤ E[gt,θ(x)]
(ii)

≤ gt,θ(x
∗)

(iii)

≤ exp(−δ2µ/2).

The inequality (i) is due to (A.1a) of Lemma A.1, by taking the expectation over the distribution
x produced by Algorithm 1 on both sides. The inequality (ii) is due to Lemma A.2, (A.1c) and
(A.1d). The inequality (iii) is due to (A.1b) of Lemma A.1. Since t = (1 − δ)µ, we have the desired
concentration bound for items selected by Algorithm 1.

We remark that similar to the standard Chernoff bound, Theorem 2.7 holds for cases where we
only know a lower bound of the actual expected value.

19



Proof of Lemma A.2. The proof is similar to the pipage rounding proof. Fix an iteration in Algo-
rithm 1. Let x0 be the vector x at the beginning of the iteration, and x1 be the vector at the end. If
Algorithm 1 uses Operation 1 in this step, then x1 is x0 + δ2ea with probability δ1

δ1+δ2
, and x0 − δ1ea

with probability δ2
δ1+δ2

. Since f is concave on the direction ea, we have:

E[f(x1) | x0] =
δ2

δ1 + δ2
· f(x0 − δ1ea) +

δ1
δ1 + δ2

· f(x0 + δ2ea) ≤ f
(
x0 +

−δ2δ1 + δ1δ2
δ1 + δ2

· ea
)
= f(x0).

If Algorithm 1 uses Operation 2 in this step, then x1 is x0 + δ2(ea − eb) with probability δ1
δ1+δ2

,

and x0− δ1(ea− eb) with probability δ2
δ1+δ2

. Since f(·) is concave on the direction (ea− eb), we have:

E[f(x1) | x0] =
δ2

δ1 + δ2
· f(x0 − δ1(ea − eb)) +

δ1
δ1 + δ2

· f(x0 + δ2(ea − eb)) ≤ f(x∗).

We obtain E[f(x)] ≤ f(x∗) by induction over all iterations. This finishes the proof of Lemma A.2.

B Missed Proofs from Section 3

B.1 Proof of Lemma 3.1

The following theorem considers the submodular covering problem:

Theorem B.1. Suppose we are given an oracle to a monotone submodular function v : 2[n̄] → R≥0,
item costs (ci ∈ Q>0)i∈[n̄], and a target value V ≥ 0. Let OPT = minS:v(S)≥V

∑
i∈S ci. Then for

any constant ϵ > 0, there is a polynomial time algorithm that finds a set S with
∑

i∈S ci ≤ OPT and

v(S) ≥
(
1− 1

e − ϵ
)
V .

The theorem can be obtained using the (1 − 1
e )-approximation for the submodular maximization

problem with a knapsack constraint [33] and binary search over OPT. We can scale ci values so that
they become integers. The binary search technique is needed to handle the case where ci’s are not
polynomially bounded after scaling. In our algorithm, we can not afford to lose a multiplicative factor
on the costs of items; therefore, we need this theorem.

Proof of Lemma 3.1. We shall use the ellipsoid method and utilize Theorem B.1 as a subroutine of the
separation oracle. Similar to [11], we can first compute the maximum weighted NSW objective Φ that
can be achieved by assigning one item to each agent, using the maximum-weight bipartite matching
algorithm. Then, we know the value of the configuration LP is between lnΦ and ln(mΦ). By making
O( logm

ϵ ) guesses, we can assume we have a number o such that the value of (Conf-LP) is in (o, o+ ϵ
3 ].

We now set up a dual program (Dual-LP) of (Conf-LP), with the objective replaced by a linear
constraint.

(Dual-LP)∑
j∈M

αj +
∑
i∈N

βi ≤ o, (5)

∑
j∈S

αj + βi ≥ wi · ln vi(S), ∀i ∈ N,S ⊆M (6)

αj ≥ 0, ∀j ∈M (7)

As we have that the value of (Conf-LP) is in (o, o+ ϵ], (Dual-LP) is infeasible. Given two vectors
ααα ∈ RM

≥0 and βββ ∈ Rn with
∑

j∈M αj +
∑

i∈N βi ≤ o, we know (6) is not satisfied for some i ∈ N and
S ⊆M . Our goal is to design an approximate separation oracle for the inequality above.

By enumeration, we can guess the agent i ∈ N , and the item j∗ ∈ S with the maximum vi(j
∗).

We discard the items j with vi(j) > vi(j
∗). As we know j∗ ∈ S, we know vi(S) ∈ [vi(j

∗),mvi(j
∗)].
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We can then divide the interval into O( logm
ϵ ) intervals of the form [a, b] with b ≤ (1 + ϵ)a. Then we

guess the interval [a, b] where vi(S) resides in. Finally, we apply Theorem B.1, with item costs αj and
target value a. Then, we find a set S′ ∋ j∗ such that∑

j∈S′

αj ≤
∑
j∈S

αj and vi(S
′) ≥

(
1− 1

e
− ϵ
)
a ≥

(
1− 1

e
− ϵ
)
· vi(S)
1 + ϵ

.

As (6) is infeasible for (i, S), we have∑
j∈S′

αj + βi ≤
∑
j∈S

αj + βi < wi · ln vi(S) ≤ wi · ln
(( e

e− 1
+O(ϵ)

)
· vi(S′)

)
.

Using the same argument as in [11], we conclude that we can solve Equation (Conf-LP) up to an

additive error of ln
(

e
e−1 +O(ϵ)

)
+ ϵ. We can scale ϵ by a constant at the beginning so that the

additive error term is at most ln
(

e
e−1 + ϵ

)
.
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